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Abstract

A highly diastereoselective synthesis of (-)-Erythrodiene was achieved viag an intramolecular Pd-catalyzed Zn-
ene reaction as the key step. It was found that Pd(OAc),/BusP was a superior catalyst for this reaction to
Pd(PPh;),. © 1998 Eisevier Science Ltd. Al rights reserved.
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The intramolecuiar aliyimetalation of doublie or triple bonds (‘metalio-ene cyclization’)
offers an attractive stereocontrolled route to five- and six-membered carbo- and heterocyclic

systems. Its application to the synthesis of many complex natural products over the past 15

(Mg) and catalytic (Pd, Ni, Rh) procedures, we recently described a novel Pd-catalyzed Zn-ene
reaction, that combines high diastereoselectivity and particular mildness with the possibility to

trap the cyclized organozinc intermediates with a variety of electrophiles (Scheme 1) [6-8].
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Herein, we present the application of this protocol to the synthesis o
marine sesquiterpenoid isolated from the Caribbean gorgonian octocoral Erythropodium
Caribaeorum [9]. The rare spirobicyclo[4. 5]decane skeleton of erythrodiene has attracted

considerable synthetic effort over the past four years, but up to now efficient stereocontrol of
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the spirocenter C2 remained an unsolved problem [10-14]. Therefore, we planned a new

proach in which the spirocenter C2 would be formed via a Zn-ene cylization 3 — 2
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Due to the well organized transition state of this reaction type, we expected that the i-Pr

group at C4 would efficiently direct the cych7at10n to the oppOSIte rlng face in order to obtain

Acetate 5 was chosen as a suitable precursor for the formation of intermediate 4. Its

synthesis from the commercially available (-)-(S)-perillyl alcohol 6 is outlined in Scheme 3.!
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After selective hydrogenation of the exocyclic double bond and hydroboration/oxidation of
the endocyclic double bond, the resulting ketone 8 was isolated as a 1:1 mixture of diastereo-

isomers. This is of no consequence as the stereogenic center will be lost during subsequent

1 All new compounds were characterized with [o]p-values, IR, 'H and "C-NMR, MS and clemental analysis and/or HRMS.
Selected analytical data for acetate 5: [}, = -71.4° (¢ = 0.9, CHCL,). "H-NMR (CDCI,, 400 MHz): 5.80 (ddt, J/=17.3, 10.2, 6.6 Hz,
1H), 5.01 (br. d, J=17.3 Hz, 1H), 4.96 (br. d, J=10.2 Hz, 1H), 4.55 (AB, J=11.9 Hz, 2H), 2.17-1.96 (m, 7H), 2.05 (s, 3H), 1.85-1.73

(m, 2H), 1.52-1.41 (m, 31D), 1.34-1.23 (m, 1H), 1.16 (¢d, J=11.9, 5.8 Hz, 1H), 0.90 (d, J=6.6 Hz, 6H). "C-NMR (CDCl,, 100 MHz):
171.4, 138.6, 137.6, 125.3, 114.6, 64.4, 40.3,33.7,33.6,32.8,32.2,28.5,28.1,26.1,21.1, 19.8, 19.7 .
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transformations. However, in order to avoid working with mixtures, the crude ketone 8 was
e

subjected to base-induced equilibration. From the resulting 5:1 diastereomeric mixture pure
1 A=fvnuc=;nnmor waa tenlated in K594 viald hyu ~rhramataaranhte Tha Aevatallina Aial O
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obtained diastereochemically pure after Grignard reaction, was converted into the o,p-
unsaturated aldehyde 10 in a one-pot reaction sequence. Thus, the primary hydroxyl function
was first oxidized using the Parikh-Doering protocol [15] and then regiospecific water
elimination was effected by addition of a basic H,O/MeOH solution. Reduction of aldehyde
10 and acetylation of the resulting allylic aicohol yielded the required acetoxydiene 5.

After exposing 5 to an excess of Et,Zn in the presence of Pd(PPh;), (5%) in Et,O at 38°C for
14 h, the organozmc 1ntermed1ates were quenched with iodine to yield iodide 12 in 52% yield,
along with 15% of s material and 15% of the reduced by
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Table |

Pd - catalyst conversion” diene 11  iodide 12 >°

Pd(PPh,), (5%) 80% 15%" 52%

Pd(OAc), / 1 equiv. Bu;P (5%) 97% 3% 90%

a) GC-determined; b) isolated yieids: ¢) d.r. 95:5 (by GC- and NMR- anaiysis).

In order to accelerate the formation of the Pd-allyl intermediate 4, the Pd(PPh;), catalyst was
replaced by a coordinatively unsaturated complex resulting from the reduction of Pd(OAc),
with one equivalent of Bu;P according to Tsuji and coworkers [16].1 This effected not only a

U In a typical experiment, a 0.02 N solution of Pd(OAc),/BusP 1:1 in degassed Et,0 (0.5 mL, 0.03 mmol, 5%) was added to the
solution of acetate 5 (54 mg, 0.2 mmol) in 3 mL of Et,0 in a Carius tube. Aftcr dropwise addition of Et,Zn (480 mg, 3.9 mmol,
20 equiv.) the tube was closed and warmed to 38°C with magnetic stirring for 14 h. After cooling to 25°C, the solution was quenched
by uropwse addition of 1 N solution of I, in THF {8 mL). After dilution with pentane and washing with an aqucous Na$,0; solution,
the organic layer was concentrated and the residue purified by chromatography to yield 60 mg (90%) of iodide 12. Selected analytical
data for 12: [a]*'y = +7.3° (¢=1.0, CHCL;). 'H-NMR (CDCl,, 400 MHz): 4.78 (br. 5, 1H), 4.63 (br. 5, 1H), 3.15 (“ddd", J=9.4, 2.7,
1.5 Hz, 1H), 2.68 (dd, J=13.0, 3.3 Hz, |H), 2.52-2.47 (m, 1H), 2.32 (“dr”, J=13.0, 3.3 Hz, 1H), 2.04-1.93 (;m, 3H), 1.88-1.70(m, 4H),
1.48-1.37 (m, 3H), 1.27-1.22 (m, 1H), 1.04 (“gd”, J=12.5, 3.8 Hz, 1H), 0.86, 0.85 (2 d, /6.4, 2-3H), 0.80 (1, J=12.6, 1H). "C-NMR
(CDCl;, 100 MHz): 152.1, 107.8, 53.7, 46.0, 41.7, 39.6, 35.2, 35.5, 32.4,31.5,29.4, 20.1, 19.6, 19.5, 14.0.
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virtually complete conversion, but also suppressed the formation of byproducts and thus
improved the isolated yield of iodide 12 to 90% (Table I).

The diastereomeric ratio of 95:5 was constant in all experiments, confirming the expected
sensibility of this mild cyclization reaction to the directing effect of the resident chiral center
C4. The tentatively assigned R-configuration at C7 in iodide 12, substantiated by NOE studies,
is in accordance with the preferred endo-cyclization mode shown in Scheme 2. Finally,
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After chromatography on AgNO;-coated silica, diastereomerically pure (-)-erythrodiene (1)
was obtained, which exhibited 1dent1ca1 physical and spectroscopical properties to those
reported for the natural product ([o 1 =-112°, CHCl;, ¢ = 0.6) [9].
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in 11 steps and 24% overali yield from a commercially available precursor. We are currently
working on the extension of this methodology on the intramolecular allylzincation of carbon-

oxygen double bonds.
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